ANT's active role in projects for technology of tomorrow

Active Nanocoated DRY-Electrode for EEG Applications

Funding: FP7-PEOPLE-2013-IAPP

1 January 2014 – 31 December 2017

Objective: development of a new EEG system employing dry electrodes.

The new system will not require the use of conductive paste or gel, nor any skin preparation to obtain good skin-sensor contact.

Active Nanocoated DRY-Electrode for EEG applications

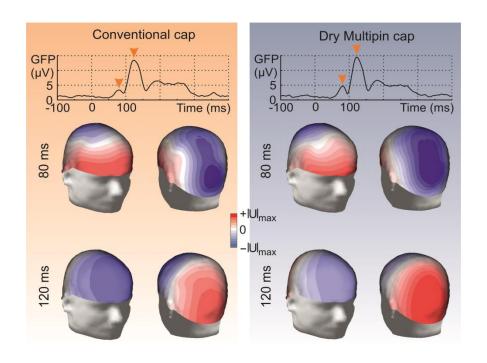
Coordinator:

Behavioral Imaging and Neural Dynamics Center University "G. d'Annunzio", Chieti (Italy)

Partners:

- Technische Universitatet Ilmenau (Germany)
- Universidade do Porto (Portugal)
- eemagine Medical Imaging Solutions GmbH (Germany)
- Casa di Cura Privata Villa Serena (Italy)

Novel EEG system with dry electrodes


Multi-pin dry electrode with polyurethane substrate and Ag/AgCl coating

Advantages:

- Good skin-sensor contact and good hair interfusion
- Extremely short application times
- No risk of skin allergies

Novel EEG system with dry electrodes

The signal quality will be comparable to that of traditional EEG systems with use of conductive gel.

Prototype validation

The prototype EEG system will be validated in different human populations, with different needs and artifact sources:

- neurological patients
- endurance athletes (cyclists and runners).

Future applications in BCI, videogames, etc.